Creative
Only logged in members can reply and interact with the post.
Join SimilarWorlds for FREE »

3 proofs that 0.999... is the same as 1

First of all writing the number 0.999... isn't not valid but for the sake of this post let's allow it.

Proof 1:

This is probably the most easy to understand.

Let's assume:
x = 0.999...
Next we'll multiply both sides by 10, so we have:
10 x = 9.999...
Let's subtract
x
on both sides.
10 x - x = 9.999... - x
Since
x = 0.999...
we get:
9 x = 9.999... - 0.999... = 9
We now can divide each side by 9 because it's not equal to zero and we get:
x = 1

Because we assumed that
x = 0.999...
and we have that
x = 1
that means that
1 = 0.999...

Proof 2:

Because the real numbers are dense, that means that you can find always a real number between two real numbers. For example we can use the arithmetic mean:
(a + b) / 2
Let's assume that
0.999... ≠ 1
. That means that with the arithmetic mean we can find a number in between, with that we would get
0.999...5
? Which isn't a real number, there is nothing like a "last digit". And even it there was, that number wouldn't be in between 0.999... and 1. That means that our initial assumption is wrong thus 0.999... is equal to 1.

Proof 3:

This is basically the actual proof because it's per definition the same. Let's look at what we mean when we write 0.999... it means that ever digit after the 0 is 9. Let's rewrite that.
0.999... = 0.9 + 0.09 + 0.009 + ...
We can rewrite that further to
= 9 * 0.1 + 9 * 0.01 + 9 * 0.001 + ...
We can add "0" since it doesn't change the value, or more specifically let's add 9 and subtract 9. With that we get:
= 9 * 1 + 9 * 0.1 + 9 * 0.01 + 9 * 0.001 + ... - 9
Let's rewrite it again
= 9 * (1/1) + 9 * (1/10) + 9 * (1/100) + 9 * (1/1000) + ... + 9
= 9 * (1/10)^0 9 * (1/10)^1 + 9 * (1/10)^2 + 9 * (1/10)^3 ... + 9
We can pull 9 outside of the sum to get:
= 9 * [(1/10)^0 + (1/10)^2 + (1/10)^3 + ...] - 9
To write it a bit more abstract we get:
That this is 9 times the sum from i = 0 to infinity over (1/10)^i and from that we subtract 9 again.
This sort of sum is called geometric series, it's of the form:
The sum from i = 0 to infinity over q^i. There's a formula for the result of the sum if |q| < 1:
1/(1-q)
In our case q = 1/10 which is smaller than one, so we can use that formula here and we get:
= 9 * [1 / (1 - q)] - 9
with q = 1/10 we have:
= 9 * [1 / (1 - 1/10)] - 9
When we simplify it we get
= 9 * [1 / (9/10)] - 9 = 9 * [10 / 9] - 9 = 10 - 9 = 1
Thus by writing 0.999... it's the same as 1. And because that's ambiguous, it's not allowed to write it so that every number written as digits is unique.
This page is a permanent link to the reply below and its nested replies. See all post replies »
DrWatson · 70-79, M
Absolutely!

Here's another argument. If someone is willing to accept that

1/3 = 0.333333.....

Then multiply both sides by 3.
Luke73 · 26-30, M
@DrWatson Yes that's one too. But it's more complicated because you first have to show that 1/3 = 0.333... and that 0.333... * 3 is 0.999...
helenS · 36-40, F
@DrWatson You would have to prove that 0.3333... = 1/3; the proof would be exactly the same as for 0.9999... = 1.
1/3 is the limit of the infinite series of which 0.3333... is a shorthand notation.
DrWatson · 70-79, M
@helenS @Luke73 Absolutely. All of these arguments, if they are to be made rigorous, rely on defining a decimal as a series.

That is why I used the word "argument" rather than "proof." Many people are willing to accept the representation of 1/3 but are skeptical about the representation of 1. To such a person, we can argue , "The truth of the second equality follows from your own acceptance of the first."

I have found this to be rhetorically persuasive even if it is not mathematically rigorous. And after someone is convinced by this, they might then be more open to seeing a real proof.