Only logged in members can reply and interact with the post.
Join SimilarWorlds for FREE »

Do you know what homology is?

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.
The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for defining and categorizing holes in a manifold. Loosely speaking, a cycle is a closed submanifold, a boundary is a cycle which is also the boundary of a submanifold, and a homology class (which represents a hole) is an equivalence class of cycles modulo boundaries. A homology class is thus represented by a cycle which is not the boundary of any submanifold: the cycle represents a hole, namely a hypothetical manifold whose boundary would be that cycle, but which is "not there".
There are many different homology theories. A particular type of mathematical object, such as a topological space or a group, may have one or more associated homology theories. When the underlying object has a geometric interpretation as topological spaces do, the nth homology group represents behavior in dimension n. Most homology groups or modules may be formulated as derived functors on appropriate abelian categories, measuring the failure of a functor to be exact. From this abstract perspective, homology groups are determined by objects of a derived category.
accidentprone · 26-30, M
I am very strong in Mathematics and program computers and create code. But maybe you even know that better than me. I am impressed.
MrAverage1965 · 61-69, M
I imagine I will be with the majority here in SW when I say I really do not understand the vast majority of this.

Post Comment