Random
Only logged in members can reply and interact with the post.
Join SimilarWorlds for FREE Β»

How to get more light out of a candle.

Candles suck for lighting as most of the energy generated goes to heat, but what if one could take that heat and convert it to electricity to power a much more efficient light souce? An LED.

This is the same technique used to power the voyager spacecraft but it uses radioactive elements instead of candles.

This design with BOM is AI generated but seems feasible. It predicts that it will give at least 8X the amount of light.

=======

Below is a practical, buildable TPV (thermophotovoltaic) candle device designed around real materials you can source, plus a clear explanation of why each choice matters.

I’ll give you:
A functional sketch (ASCII)
Component list & materials
Operating physics
Expected performance
Critical design constraints (the β€œgotchas”)
This is not perpetual-motion fantasyβ€”it’s as close as physics allows at candle scale.

1. Functional sketch (TPV candle system)
Copy code

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Aluminum Reflector β”‚ β”‚ (polished interior) | β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Selective Emitter β”‚
β”‚ (SiC / tungsten β”‚
β”‚ coated ceramic) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ IR photons (1–2 Β΅m)
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ TPV Cell Array (InGaAs / Ge) β”‚
β”‚ Water-cooled heat sink β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ DC power (0.3–0.6 V/cell)
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ DC Boost Converter β”‚
β”‚ (Joule thief / MPPT) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ High-efficiency LED(s) β”‚
β”‚ (warm white, 2700–3000K) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

β–²
β”‚
β”Œβ”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”
β”‚ Candle β”‚
β”‚ (beeswax) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
2. Materials & sourcing (realistic, not exotic fantasy)
πŸ”₯ Candle (heat source)
Material
Beeswax or paraffin candle
Flat wick (stable flame)

Why:
Beeswax burns slightly hotter and cleaner
Lower soot = less emitter fouling

Source:
Candle-making suppliers
Beekeeping supply stores

🌑 Selective emitter (MOST IMPORTANT PART):
Preferred materials
Silicon carbide (SiC) ceramic
Alumina ceramic with tungsten coating

Why:
Withstands 1200–1600 K
Emits strongly in near-IR (1–2 Β΅m) where TPV cells work best
Chemically stable in flame

Forms:
Thin ceramic disk
Hollow ceramic dome
Porous SiC foam

Sources:
McMaster-Carr (SiC kiln shelves, rods)
Ceramic kiln suppliers
eBay (SiC burner plates)

πŸ”΄ Reflector / optical concentration
Material
Polished aluminum
Gold-coated foil (optional upgrade)

Why:
Reflects IR back into emitter
Raises effective temperature
Improves spectral density

Source:
Aluminum sheet (hardware store)
Mylar emergency blanket (budget option)

⚑ TPV cells (the hardest part):
Viable TPV materials
InGaAs (Indium Gallium Arsenide) – best
Germanium (Ge) – acceptable
GaSb – excellent but rare

What will NOT work
Silicon solar cells (wrong bandgap)

Form:
Small-area cells (1–5 cmΒ²)
Multiple cells wired in series

Sources:
Surplus optics suppliers
Hamamatsu / Thorlabs (expensive)
University surplus auctions
eBay (search β€œInGaAs photodiode”)

❄ Heat sink (mandatory)
Material:
Copper or aluminum block
Finned heat sink
Optional water loop

Why:
TPV efficiency collapses if cells overheat
Cold side must stay < 60Β°C

Source:
PC cooling suppliers
Old CPU heat sinks

πŸ”Œ Power conditioning Electronics:

Ultra-low-voltage boost converter
Joule thief or LTC3108-style harvester
Schottky diodes

Why:
TPV cells produce 0.2–0.6 V
LEDs need stable current
Source
Digi-Key
Mouser
Adafruit / SparkFun


πŸ’‘ LED output Type:
High-efficiency warm white LED
2700–3000K (matches candle ambiance)

Examples
Nichia E21A
Samsung LM301B (warm bin)

Why:
150–200 lm/W electrical
Pleasant spectrum


3. Operating physics (what’s actually happening):

Candle heats emitter to ~1000–1200 K
Emitter radiates IR photons
TPV cells convert bandgap-matched IR β†’ electricity
Excess heat removed via heat sink
Boost circuit powers LED
This bypasses mechanical losses entirely.


4. Expected real-world performance (honest numbers)

Parameter
Value
Candle thermal power
~80–100 W
Emitter radiative efficiency
~30–40%
TPV conversion efficiency
1–3%
Electrical output
0.8–2.5 W
LED light output
100–300 lumens
That’s equivalent to 8–20 candles of visible light, powered by one flame.
Top | New | Old
ArishMell Β· 70-79, M
It's still using the same total amount of energy, so where is the efficiency gain? The l.e.d. may be brighter than the flame alone, but not necessarily more powerful, and most of the system is still a heater.
Northwest Β· M
Switch to pure olive oil and convert.

 
Post Comment